# FINITE ELEMENT APPROXIMATION OF A TIME-FRACTIONAL DIFFUSION PROBLEM FOR A DOMAIN WITH A RE-ENTRANT CORNER

@article{Le2017FINITEEA, title={FINITE ELEMENT APPROXIMATION OF A TIME-FRACTIONAL DIFFUSION PROBLEM FOR A DOMAIN WITH A RE-ENTRANT CORNER}, author={Kim-Ngan Le and William McLean and Bishnu P. Lamichhane}, journal={The ANZIAM Journal}, year={2017}, volume={59}, pages={61 - 82} }

An initial-boundary value problem for a time-fractional diffusion equation is discretized in space, using continuous piecewise-linear finite elements on a domain with a re-entrant corner. Known error bounds for the case of a convex domain break down, because the associated Poisson equation is no longer $H^{2}$ -regular. In particular, the method is no longer second-order accurate if quasi-uniform triangulations are used. We prove that a suitable local mesh refinement about the re-entrant corner… Expand

#### 6 Citations

Unstructured mesh finite difference/finite element method for the 2D time-space Riesz fractional diffusion equation on irregular convex domains

- Mathematics
- Applied Mathematical Modelling
- 2018

Fractional differential equations are powerful tools to model the non-locality and spatial heterogeneity evident in many real-world problems. Although numerous numerical methods have been proposed,… Expand

An unstructured mesh control volume method for two-dimensional space fractional diffusion equations with variable coefficients on convex domains

- Mathematics, Computer Science
- J. Comput. Appl. Math.
- 2020

A novel unstructured mesh control volume method to deal with the space fractional derivative on arbitrarily shaped convex domains which can reduce CPU time significantly while retaining the same accuracy and approximation property as the finite element method. Expand

Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview

- Mathematics
- Computer Methods in Applied Mechanics and Engineering
- 2019

Abstract Over the past few decades, there has been substantial interest in evolution equations that involve a fractional-order derivative of order α ∈ ( 0 , 1 ) in time, commonly known as… Expand

A Second-Order Crank-Nicolson Method for Subdiffusion

- Mathematics
- 2016

In this work, we analyze a Crank-Nicolson type time stepping scheme for the subdiffusion equation, which involves a Caputo fractional derivative of order $\alpha\in (0,1)$ in time. It combines the… Expand

Wider Contours and Adaptive Contours

- Mathematics, Computer Science
- 2017 MATRIX Annals
- 2019

This work discusses choosing a contour that is wider than it might otherwise have been for a normal matrix or operator, and suggests a semi-analytic approach to adapting the contour, in the form of a parabolic bound derived by estimating the field of values. Expand

Finite element methods for fractional diffusion equations

- Computer Science, Mathematics
- Int. J. Model. Simul. Sci. Comput.
- 2020

Fractional diffusion equations have applications in engineering, physics, biology, finance, etc., and there has been substantial interest in fractional diffusion equation over the past few decades. Expand

#### References

SHOWING 1-10 OF 26 REFERENCES

Parabolic finite element equations in nonconvex polygonal domains

- Mathematics
- 2006

Let Ω be a bounded nonconvex polygonal domain in the plane. Consider the initial boundary value problem for the heat equation with homogeneous Dirichlet boundary conditions and semidiscrete and fully… Expand

Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations

- Mathematics, Computer Science
- SIAM J. Numer. Anal.
- 2013

This work considers the initial boundary value problem for a homogeneous time-fractional diffusion equation with an initial condition $v(x)$ and a homogeneity Dirichlet boundary condition in a bounded convex polygonal domain $\Omega$ and establishes almost optimal with respect to the data regularity error estimates. Expand

Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation

- Computer Science, Mathematics
- Numerical Algorithms
- 2010

A piecewise-linear, discontinuous Galerkin method for the time discretization of a fractional diffusion equation involving a parameter in the range − 1 < α < 0 and the analysis shows that, for a time interval (0,T) and a spatial domain Ω, the error is of order k2 + α, where k denotes the maximum time step. Expand

Graded Mesh Refinement and Error Estimates for Finite Element Solutions of Elliptic Boundary Value P

- Mathematics
- 1993

This paper is concerned with the effective numerical treatment of elliptic boundary value problems when the solutions contain singularities. The paper deals first with the theory of problems of this… Expand

Numerical solution via Laplace transforms of a fractional order evolution equation

- Mathematics
- 2010

We consider the discretization in time if a fractional order diffusion equation. The approximation is based on a further development of the approach of using Laplace transformation to represent the… Expand

Regularity of solutions to a time-fractional diffusion equation

- Mathematics
- 2010

We prove estimates for the partial derivatives of the solution to a time-fractional diffusion equation posed over a bounded spatial domain. Such estimates are needed for the analysis of effective… Expand

Numerical solution of a parabolic equation on the sphere using Laplace transforms and radial basis functions

- Mathematics
- 2011

We propose a method to construct numerical solutions of a parabolic equation on the unit sphere. The time discretisation uses Laplace transformation and quadrature. The spatial approximation employs… Expand

Singularities in Boundary Value Problems

- Mathematics
- 1992

This book studies the solutions of a boundary problem near corner edges and vertices. The exposition is introductory and self-contained. It focuses on real-life problems considered in the actual… Expand

The finite element method for elliptic problems

- Engineering, Mathematics
- Classics in applied mathematics
- 2002

From the Publisher:
This book is particularly useful to graduate students, researchers, and engineers using finite element methods. The reader should have knowledge of analysis and functional… Expand

Gmsh : a three-dimensional finite element mesh generator with built-in pre-and post-processing facilities

- 2009

Gmsh is an open-source three-dimensional finite element grid generator with a build-in CAD engine and post-processor. Its design goal is to provide a fast, light and user-friendly meshing tool with… Expand